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DIFFUSION OF SMALL-SCALE DENSITY IRREGULARITIES
DURING EQUATORIAL SPREAD F

I. INTRODUCTION

Over the past few years a considerable amount of effort has

been directed at understanding the physical processes associated

with equatorial spread F. Major advances have been made both

experimentally (Kelley et al., 1976; Woodman and La Hoz, 1976;

McClure et al., 1977; Huba et al., 1978; Weber et al., 1978,

Tsunoda and Towle, 1979; Towle, 1980; Tsunoda, 1980,

Szuszczewicz et al., 1980; Tsunoda, 1981; Rino et al., 1981;

Keskinen et al., 1981) and theoretically (Haerendel, 1974;

Hudson and Kennel, 1975; Scannapieco and Ossakow, 1976; Chaturvedi

and Ossakow, 1977; Ott, 1978; Ossakow and Chaturvedi, 1978; Costa

and Kelley, 1978a,b; Huba et al., 1978; Ossakow et al., 1979;

Keskinen et al., 1980; Zalesak and Ossakow, 1980; Sperling and

Goldman, 1980; Keskinen et al., 1981; Huba and Ossakow, 1981a,b; for

a complete review through 1980, see Ossakow, 1981) in this area.

Presently, much of the research on spread F is focussed on small-

scale irregularities; that is density fluctuations occurring on

scale lengths less than several hundred meters. A brief overview

of this work is as follows.

The first indication of small-scale density fluctuations

being present during equational spread F is the 3 m backscatter

radar measurements made at Jicamarca in the early seventies

(Farley et al., 1970). Since the mean ion gyro-radius is n, 4 m,

these observations show that turbulence exists on scale lengths

smaller than the ion gyro-radius. Moreover, power spectral den-

sity and radar backscatter measurements (Woodman and Beau, 1978)
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suggest that the actusal observed 3 m radar backscatter power is

substantially below (3-4 orders of magnitude) the extrapolated

in situ k- spectrvm from longer wavelengths (i.e., Z100 m).

Thus, the 3 m irregularities do not appear to be caused by a

turbulent cascade of energy from smaller wave numbers. Recently,

backscatter measurements have been made using the ALTAIR (Auba

et al., 1978; Towle, 1980; Tsunoda and Towle, 1979; Tsunoda,

1981) and TRADEX (Tsunoda, 1980) radar systems at Kwajalein and

have found fluctuations at 1 m, 36 cm, and 11 cm. It appears

then that turbulence even exists at wavelengths comparable to

the mean electron gyro-radius (-3 cm).

In situ satellite (McClure et al., 1977) and rocket (Kelley

et al., 1976; Moese et al., 1977; Szuszczewicz et al.., 1980) ex-

periments have also been performed during equatorial spread F. The

major result relevant to the small-scale irregularities is the ob-

servation of steep plasma density gradients (Costa and Kelley,

1978a; Kelley et a]_., 1981; Szuszczewicz, private communication,

1980). These sharp density gradients presumabl; arise from the

nonlinear development of plasma macroinstabilities (e.g.,

Rayleigh-Taylor). Density gradient scale lengths have been ob-

served as small as 30 m, although typically they are Z75 m.

Also, correlative studies indicate that the strongest radar back-

scatter signals ccincide with the walls of plasma bubbles, i.e.,

regions of steep density gradients (Szuszczewicz et al., 1980;

Tsunoda, 1981). Based on these observations, the most plausible

explanation for the small-scale irregularities is the excit~tion

of drift waves. In the wavelength regime krZLlS 1 (rLi is the

near ion gyro-radius), which corresponds to scale-sizes greater

2
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than 25 m, the universal drift (collisionless; Costa and Kelley,

1978a,b), or drift dissipative (collisional; Goldman and Sperling,

1980; Huba and Ossakow, 1979a) instabilities may be operative de-

pending upon the physical parameters (e.g., collision freguenc-

ies). However, at wavelengths corresponding to the 3 m irregul-

arities, ion viscuous camping prevents the linear excitation of

these instabilities for typical spread F conditions (Huba and

Ossakow, 1979a). It has been suggested that these irregulari-

ties may be generated via a parametric process driven by a large-

amplitude, long wavelength mode (Huba and Ossakow, 1979a). On the

other hand, the generation of the 1 m, 36 cm and 11 cm irregular-

ities are probably due to the lower-hybrid-drift instability (or

possibly the drift cyclotron instability) which exists in the re-

gime krLe. 1, where rLe is the mean electron gyro-radius (Huba

et al., 1978; Huba and Ossakow, 1979b; Huba and Ossakow, 1981a,b)

A question naturally arises: what is the influence of the

drift wave turbulence on the evolution of the plasma? Laboratory

experiments indicate that the dominant effect is anomalous dif-

fusion of plasma across the magnetic field to smooth out density

gradients. That is, particles interact with the collective elec-

tric fields associated with the instability and are able to scat-

ter across field lines. Thus, in general, drift instabilities

act to destroy the free energy source which drive them, i.e, the

density gradients. Of course, the ionospheric F region is not

collisionless and the classical electron-ion collision frequency can

be significant (i.e., vcl /Ql N 1-5 where vck is the classical
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electron-ion frequency and fi is the ion gyro-frequency) de-

pending on the value of the density. Coulomb collisions may al-

so be important in the cross-field diffusion of plasma. Collis-

ions with neutral particles also occur but are less frequent than

electron-ion collisions at altitudes above 300 km.

Observationally, diffusion appears to be the dominant

mechanism which smooths out the steep density gradients; those

such that Ln - several hundred meters where Ln is the density

gradient scale length. By this we mean the following. In the

hierarchy of small-scale irregularities responsible for the

radar backscatter measurements, the smaller the irregularity

size, the steeper the density gradient scale length required to

support it. Very sharp density gradients (L n 100 m) are

necessary to excite the lower-hybrid-drift instability which is

responsible for the 1 m, 36 cm, and 11 cm irregularities. On

the other hand, weaker density gradients (L n 100 m ) can

drive the longer wavelengths modes (krLi_ 1) which are probably

necessary to generate the 3 m irregularities. Since the time

scale associated with a diffusion process is T uX 2 !D (X is aD

scala length and D is the diffusion coefficient), the shortest

density gradient scale lengths diffuse away first. Thus, one

would expect the smallest scale irregularities to diE~appear

first in the decay phase of equatorial spread F and this, in

fact, seems to be the case (Basu et al., 1978; Basu et al., 1980).

The purpose of this paper is to examine both clsasical and

anomalous diffusion processes for equatorial spread F conditions.

As such, we will neglect all driving forces, which generate
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equatorial spread F irregularitites, and consider the pure dif-

fusive decay of such irregularities. We focus on the steeper

density gradient scale lengths (i.e., L <_ several hundred
n

meters), since diffusion is much too slow to be important in the

evolution of the large-scale irregularities (L n 1 km). Our
n

main conclusion is that anomalous diffusion is the dominant dif-

fusion mechanism for spread F.

The scheme of the paper is as follows. In the next section

we present the diffusion equation and a discussion of the diffus-

ion coefficients considered. For the anomalous diffusion coef-

ficient we base our analysis on the universal drift instability.

In Section III we discuss this choice of the anomalous diffusion

coefficient. Section IV contains the results of a numerical a-

nalysis of the diffusion equation for both classical and

anomalous diffusion coefficients. In the final section we apply

our results to equatorial spread F. We also present similarity

solutions to the diffusion equation in the Appendix.

II THEORY

We consider the problem of cross-field diffusion of plasma

in a low 8 plasma (B<<l, where 0=81n(T e+T i/B 2 )). The one-eh ine

dimensional diffusion equation can be written as

-n a - an (1)

a t ax / a

where [Perkins et al., 1973]

8 2
Dv ei 2 - (2)

pe
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v. is the electron-ion collision frequency (either classical
ei

or anomalous) and wpe = (41ne 2/m ) is the electron plasma fre-

quency. Note that we assume a one-dimensional slab geometry

which is adequate for small-scale spread F irregularities. The

one dimensionality simplifies the analysis, of course, but it

is a reasonable assumption given that the irregularities during

ESF are generated by steep gradients, e.g., the walls of bubbles.

Also, we assume Te = Ti and have neglected electron-neutral

collisions.

We choose the following collision frequencies for our

analysis:

Classical: v =V =(X /3.5 x 105 )(n /T 32) sec (3)ei cj c e e

Anomalous: vei V an = (2f/9) Icn rLiI Se (4)

In Equations (3) and (4) Ac is the Coulomb logarithm

(X = 23.4-1.15 log n + 3.45 log T e), e = Id gn n/dxi = I/L
ce e nx n

where Ln is the density gradient scale length, rLi is the mean

ion gyro-radius, Q is the electron gyro-frequency, n is in
e e

crn 3 and T is in eV. The anomalous collision frequency used
e

is based upon the anomalous transport properties associated with

the universal drift instability (Gary, 1980). We discuss this

choice shortly. These collision frequencies lead to the follow-

ing diffusion coefficients:
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0= nn) (5)
Classical: D = Dc£ V P2  (n/n

Anomalous: D = Dan = L n r7L'p Se (I)

wher es = Te/Ti)/me1/e is an effective electron gyro-

radius, no is a normalization density and v 0 =v (ne=no)

From Eqs.(5)-(7) it is evident that

T) v)

D5 k-- len rLi (T)
an e

Thus, for typical spread F conditions it is found that D <<D
cR. an

and one expects anomalous diffusion to dominate over classical

diffusion.

We finally substitute Eqs. (5)-(7) into Eq. (1) and arrive

at the following diffusion equations:

0a
a__n 0 o2  -a ( no n

Classical: c no  an (8)
a Zes a x n0ax)

Anomalous: an 41 Q 2  e ri (9)
-t =9- e Oes ax n Li ?xI

We now transform to dimensionless variables and obtain

a n -a ( , a(n0
Classical: t- a al c) (10)
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0
n = n/n ; s x/x; T., (p2  ".

Anomalos: n aIn
loan

P 2  rht Pes rLi
n n /no; s = x an X9 (at)

Clearly, Eqs. (10) and (11) are non-linear partial differential

equations. We solve them numerically as initial value problems

in Section IV. They also possess similarity solutions which

offer some insight into the scaling of diffusion process. We

discuss these solutions in the Appendix. However, we now discuss

our choice of the anomalous diffusion coefficient.

III. ANOMALOUS DIFFUSION

As mentioned earlier, the collective electric fields as-

sociated with a plasma instability driven by a density gradient

can cause particles to be scattered across magnetic field lines,

which leads to anomalous diffusion of plasma. This process can

eventually smooth out the density gradient and suppress the

instability. Several estimates of the anomalous diffusion co-

efficient for this phenomenon have been given based upon a

variety of physical arguments. Perhaps the best known is

D < y/k 2 (12)

an I

which is derived heuristically by Kadomtsev (1965) for a

strongly turbulent plasma (i.e., y "' w wher w- w r + iy).

More sophisticated derivations of this relationshin have beer

presented although there are criticisms of this estimate.

. . . . .. . .i .. . . ,. . . . - - 1 ll I . . . . - . . . . .. .. .8 .



Nevertheless, Eq. (12) is used frequently, primarily because of

its simplicity.

An alternative procedure to estimate the anomalous dif-

fusion coefficient is based upon quasi-linear theory. Second-

order Vlasov theory is used to define an anomalous collision

frequency which can then be determined from the linear pro-

perties of the mode and the saturation energy of the instability.

The diffusion coefficient is then found from Eq. (2).

In this paper we opt for the second approach and base our

analysis on the universal drift instability, i.e., collisionless

drift instability. (It should be noted that Kelley et al., 1981,

have suggested that collisionless drift mode waves are the most

likely candidate for the observed electric field and density

fluctuation spectra in the 10-100 m regime). The details of this

method are outlined by Gary (1980) and we do not reproduce them

here. However, several comments should be made. First, the

estimate of Dan given by Eq. (7) is, in fact, comparable to

that of Eq. (12). Second, Eq. (7) explicitly contains the den-

sity gradient which is consistent with the notion that dif-

fusion occurs in regions that are unstable. This dependence on Ln

leads to the nonlinearity of the diffusion equation. Finally,

other instabilities, such as the drift dissipative (collisional

drift instability) (Goldman and Sperling, 1979) or the lower-

hybrid-drift instability, could also be relevant. Whether the

universal drift instability is excited depends upon the classical

electron-ion collision frequency Vcz , which, in turn, depends

9



upon the density. Typically, v 1( /a 0.8-5 for electron density
4 6 -

in the range 10 - 10 cm . For unstable modes in the regime

krLi j 1 it is found that the drift instability is neither

purely collisionless, nor purely collisional (Huba and Ossakow,

1979a). Also estimates of the diffusion coefficient associated

with the drift dissipative instability are comparable to that

of the universal drift instability (Kadomtsev, 1965). Thus,

although collisions affect the universal drift instability for

typical spread F conditions, use of the anomalous diffusion co-

efficient associated with this mode is Justified since it is
1

qualitatively accurate (i.e., D-L - ) and is quantitatively ac-
n

curate to within a factor of 2 or 3. On the other hand, the

anomalous diffusion coefficient of the lower-hybrid-drift in-

stability is substantially smaller than that of the universal

drift instability and can be neglected (Gary, 1980).

IV. NUMERICAL RESULTS

We solve Eqs. (10) and (11) numerically as an initial value

problem using a leap-frog scheme for the temporal variation and

a fourth-order, finite difference scheme for the spatial varia-

tion. We choose as the initial density profile

n (s, r-O) (1-c) [I + c tanh s) (13)

where 0 :5e<I, s - x/X, and n-n(s)/n(s--). Here, £ determines

the magnitude of the density change across the boundary layer

A. The boundary condition is 3n/3s - 0 at the boundaries

(i.e., Isl>>I ) a, d n(Isl ' -,T) = n(Isl -,0). We choese At

10



sufficiently small so that the Courant-Levy condition is sat-

isfied to prevent numerical instability. The grid size As is

varied to insure that an asymptotic solution is obtained as

As +0. For the results presented below we choose e = 0.9 so

that the density changes approximately an order of magnitude

across the boundary layer A. For different values of c, the

results remain qualitatively the same although quantitative

changes occur. We also point out that A is a constant which

characterizes the initial width of the boundary layer. However,

X is not the same as the scale length of the density gradient

L n . The density gradient scale length is defined by

L = X[d £a n/ds] and varies across the boundary layer. itn

is the density gradient scale length L that is critical to then

excitation of drift instabilities and not A.

A. Classical Diffusion

We expand Eq. (10) to obtain

an - lni n (han =a + n - (14)

DT'Xas' as2

where T Vc0t (p 2 /X 2 ). The solution to this equation is shown
CE ct es

in Figure 1 which plots n(s,T) vs. s at times T = 0.0, 0.2,

and 0.4. As is expected, the width of the boundary layer is in-

creasing with time. Note that diffusion is occurring more

rapidly in the region s>O than the region s<O. This occurs

because of the density dependence of the diffusion coefficient.

11



Since Dc 0n and the density is greater for s>0 than s<O, the

diffusion coefficient is larger for s>0 and faster diffusion

takes place in this region.

In figures 2a and 2b, we plot the spatial and temporal

variation of the inverse density gradient scale length. In

Figures 2a we show X/Ln vs. s(where X/Ln - (1/n) aW/as) for

= 0.0, 0.2 and 0.4. The shortest density gradient scale

lengths exist in the region s<O due to the (I/n) dependence of
1

L .. However, it is interesting to note that the maximum in-n

verse gradient scale length actually increases during the initial

evolution of the density profile. This is better shown in

figure 2b, which plots (X/Ln)max vs. Trc. The inverse gradient

scale length increases "w20% in a time Tc ," 0.06. After this

time it decreases monotonically.

The reason for the initial steepening of the density pro-

file can be understood as follows. From Eq. (14) we find that

n(S,T+AT) (s,) + AT (a/as) n n (15)

for AT<<T. A portion of the initial profile n(s,T) is shown in

Figure 3 by the solid line (not drawn to scale), and we have

isolated 3 points (so S1 ,s2). Note that (an/as) 2 > 0 and

(a2 /as2) > 0 for the region shown so that both terms in the

brackets of Eq. (15) initially tend to increase the density for

s0<s<s2 . At s=sl the density increases an amount An1 and at

s=8 2 the density increases amount AnI, in a time AT. However,

An2>An1  since (an/3s) ,>(an/as)s,, and n >nj. This can be shown

easily if we take nn's in the region 80<8<82 .

12



Physically, since D-n, the diffusion coefficient is larger at

S2 than sl and more particles diffuse to 52 from 8>62 than to

s, from s>sj. Thus, a steepening of the density profile occurs.

This process continues until 2 /3s2.o at s-82 so that A 1 >6n2"

This can be seen by noting the evolution of n and ( Ln ) at

s=sl in Figures 1 and 2a. At T = 0.2 the density profile has

steepened (i.e., A/L n has increased from its value at T - 0.0)

and 32/39s2>0. However, at T - 0.4 the profile has become less

steep (i.e., X/Ln has decreased from its value at T - 0.2) and

a2 n/as 2 < O.

B. Anomalous Diffusion

We rewrite Eq. (11) as"I 22n)
-- 1 + 2 -7 (16)
3T as ^U as as 5

an n n

where ra n (4n/9)(p 2 I )(rLi /X) 0 e t. Note the explicit de-

pendence on A/L n so that diffusion only occurs in regions of the

plasma density gradient (i.e., only the regions which can support

drift waves). The temporal evolution of the initial profile

n(ST=O) is shown in Figure 4 for times I -0.0, 1.0, and 2.0.an

In contrast to the classical diffusion process, the largest

amount of diffusion is occurring in the region s<0. This is

simply due to the fact that Dan is largest in this region. The

spatial and temporal evolutions of (X/L ) are shown in Figures
n

5a and 5b. In Figure 5a, it is clear that (X/Ln ) is more per-

vasive for s<O than s>O. Also the maximum inverse gradient

18



scale length is decreasing in time. This is shown in Figure

5b, which indicates that (A/Ln)Max decreases monotonically in

time and has decreased by ;50% during the time period consider-

ed. This result is consistent with the notion that the effect

of the drift instability is to smooth out the plasma density

gradient.

V. APPLICATION TO EQUATORIAL SPREAD F

It has been shown that both classical and anomalous dif-

fusion processes tend to smooth out density gradients. The

question remains as to which process dominates during equatorial

spread F. The key parameter which can answer this question is

the time scale of each process In Table I we contrast the

classical and anomalous diffusion time scales for parameters

typical of equatorial spread F. We remind the reader that

Io

Classical: tC (2/p 2) T /(I'
cxes ct ct

Anomalous: tan (9/4w) (A2 /p s 2) (A/rLi an e (18)

where v 0 ci (n(s---)), pe 2 - (Te+Ti)/mene 2 , rLi 0 (TiAni) '

Qe = eBo/c and A is the initial scale length. We choose

T = T i - 0.1 eV, B - 0.3 C, n(s--)-10 cm and consider an 0+

plasma. For these parameters we find that ps 3.5. cm,

0 _1 6 _1
rLi m 4.3 m, v c0 130 sac and 9e - 5.3 x 10 sac . The

time scales Eqs. (17) and (18) are shown in Table I for several

initial scale lengths, A- 50 m, 100 m, 200 m, and 500 m. The

14



corresponding minimum initial density gradient scale lengths are
~1

L =40 m, 80 m, 160 m, and 400 m where L n(di#/.n/dx)- It shouldrn n

be noted immediately from Table I that the time scale for the clas-

sical diffusion process is hours while that for the anomalous dif-

fusion process is minutes. As anticipated from Eq. (7, clas-

sical diffusion is a much slower process than anomalous dif-

fusion for the F region ionospheric plasma. Moreover, since

the initial tendency of classical diffusion is to steepen the

density profile, at least an hour passes before the density

gradient begins to weaken for the situation in Table I. On the

other hand, the action of the anomalous diffusion process is to

always smooth out the density gradient. For initially steep

gradients (L a100 m), wave turbulence can double their scalen

lengths in several minutes (t <5 min). However, several hours

are needed to diffuse density profiles to scale lengths on the

order of a kilometer. In order to significantly diffuse density

gradient scale lengths greater than a kilometer, many hours are

required (Z8 hrs.) since t a X
an

There is experimental evidence that suggests steep density

gradients (Ln! 100 m) relax in a time 5 minutes. Szuszczewicz

et al.(19 8 0) has observed intense 1 m backscatter from the ALTAIR

radar at Kwajalein during the decay phase of equatorial spread F.

The most intense backscatter signal appears to decay away on the

time scale .5 minutes. Presumably, very share density gradients

exist to produce the 1 m density fluctuations via lower-hybrid-drift

instability (L < 100 m). Since anomalous diffusion can smooth

out the sharp density gradients on this time scale, then it in

15



likely that the lover-hybrid-drift mode is also suppressed on

this time scale. This would cause the 1 m backscatter signals

to weaken considerably, consistent with observations. Also, as

indicated earlier, in the decay phase of equatorial spread F,

the smallest density irregularity scale-sizes disappear first,

(Basu et al., 1978; Basu, 1980), i.e., 36 cm backscatter fades

before the 1 m backscatter, the 1 m backscatter fades before the

3 m backscatter, and so on, which is also consistent with an

anomalous diffusion process due to drift waves since t X3.
an

On the other hand, large scale density irregularities (Ln 1 km)

are observed to decay in several hours (Basu et al., 1980;

Aarons et al., 1980) and this process cannot be explained by

diffusion, even anomalous diffusion.

VI. CONCLUSION

The purpose of this paper is to examine the diffusion of

density irregularities during equatorial spread F. We have con-

sidered both classical and anomalous diffusion processes. A

major assumption in our analysis is that ary driving mechanism

which produces the density irregularities (1, n several hundredn

meters) has ceased. Presumably the small-scale irregularities

are generated nonlinearly from a macroinstability (e.g., Rayleigh-

Taylor). Thus, we limit our attention to the decay phase of

equatorial spread F.

Experimentally, diffusion seems to be the dominant process

which smoot...3 out sharp density gradients (L nseveral hundredn

meters). This is based on the fact that the diffusion time is

16



proportional to some power of the diffusion length [Eqz. (17)

and (18)]. Thus, the shorter density gradient scale lengths

diffuse away before the longer ones. Observationally this

is suggested by the order of the decay of radar backscatter

signals (i.e., the shortest ones fade away first) which

are due to drift wave turbulence. Also the time scale

associated with this process is of the order of minutes.

Based on our analysis, we find that si anomalous diffusion

process is consistent with these observations while classical

diffusion is much too slow. The anomalous diffusion is based

upon drift wave turbulence presumed to exist at wavelengths

such that kr L1. We have considered an explicit model for the

anomalous diffusion coefficient based upon the collisionless

universal drift instability. Although collisions probably

modify the dispersive properties of the mode, the anomalous dif-

fusion coefficient is not expected to be significantly different

(neither qualitatively nor quantitatively). On the other hand,

diffusion of large scale irregularities (A 1 km) does not

seem possible since the time scale associated with this process

is many hours ( Z 8 hrs.'. Another mechanism must occur to

smooth out these irregularities, e.g., shorting out to the E

region (which cc ntinuously builds up in the morning hours).

A possible scenario is that anomalous diffusion causes the

gradient scale lengths L several hundred meters, whch drive
n

the radar backscatter observed irregularities (. 3 m), to dis-

appear on time scales of the order of minutes. Radar backscatter

observed irregularities (f&3 m), themselves without the driving

17



gradient scale lengths, can disappear by either classical or

anomalous diffusion. Scintillation causing irregularities

( > 1 km) cannot decay by either classical or anomalous diffusion

because it requires too much time (> 8 hrs.). However, these

long wavelengths can couple effectively via the high conductivity

along the geomagnetic field, to lower regions (i.e., E regions)

of the ionosphere (both north and south of the equator). As

these E regions build up conductivity they short out the polar-

ization electric field associated with the long wavelength ir-

regularities and so short out the irregularities. The time

scale for the conductivity buildup would be shorter than the

time required for these long wavelengths to disappear by

diffusion.
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TABLE 1. Classical and Anomalous Diffusion Time Scales

for Parameters Typical of Equatorial Spread F

CLASSICAL DIFFUSION

- 0.0 t = 0.2 - 0.4

X(M) L n(m) L n(m) t cl(Ora) L n(m) t cl(hrs)

50 40 38 0.9 47 1.8

100 80 76 3.5 94 7.0

200 160 152 14.0 188 28.0

500 400 380 90.0 470 180.0

ANOMALOUS DIFFUSION

T - 0.0 T= 1.0 T 2.0

X (m) L n(m) L n(m) tan (min) Ln (m) tan (min)

50 40 71 0.1 90 0.2

100 80 142 0.9 181 1.8

200 160 285 6.9 363 13.9

500 400 714 108.0 909 216.0
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APPENDIX

We present similarity solutions to the nonlinear classical

and anomalous diffusion equations (Eqs. (10) and (11)).

1. Classical Diffusion

The classical diffusion equation, i.e., based on the

Coulomb electron-ion collision frequency, has received consider-

able attention. A variety of similarity solutions exist depend-

ing upon the initial conditions and the boundary conditions.

One solution is given in Longmire (1963).

We consider the equation (which is (i4) recast)

an - 1
a-- T 2 - _sn (A I )

and search for solutions of the form

a eo Tb
n = T n (s/T ) (A2)

where a and b are constants. Defining a new variable

& Rs/Tb  (A3)

and substituting Eqs. (A2) and (A3) into Eq. (AI) yields

2a-2b (4

a-I I'u a-I It I a2 (A4)
at n~ -bt &'

We require

a * 2b -1 (A5)

s0



so that the powers of t cancel. In order to determine a and b

we impose the added condition that the plasma can diffuse freely

(i.e., f nds - constant), This leads to the requirement that

a + b = 0 (A6)

Thus, from Eqs. (A5) and (A6) we obtain

a =- 1/3; b = 1/3 (A7)

and Eq. (A4) becomes

I () _I , n 1 a2(2
- 3 3 a 2 .(A )

The solutions of Eq. (A8) require n vanish at some point so

that the plasma occupies a finite region at any time. We choose

s - ± s (the vanishing point) at T - To  The density is then

given by

0 ()2 j2/n (sT) = 2  1/3 - ( (A9)O' 6 T-o / so

0

Note that if the initial density at the origin is n = I and

the initial scale length is s = (xX), the time it takes for

the scale length to double is

c£ I

(OlO

or

7 A 2  1
A 1 (All)cl 6 2e 0£

2 cO
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which is comparable to the numerical results. It is important

to recognize a major difference between the similarity solution

Eq. (A9) and the ionospheric problem. Equation (A9) considers

the diffusion of a density enhancement as opposed to a density

depletion which occurs in the ionosphere. One difference is

the initial steepening of the density profile for a depletion.

This effect does not occur for an enhancement. However, the

asymptotic solutions of both problems yield comparable time

scales.

2. Anomalous Diffusion

We consider the equation

,/
an i an an (A12)
at T. as asn

and look for solutions of the form

n = 1 - Sexp (-ip(X)) (A13)

where X - sa/Tb and 0<6<1 substituting Eq (A13) into Eq. (A12),

we find a - 3 and b - I where ip(X) satisfies the nonlinear dif-

ferential equation

X(d)2 4 d 2 X d 2' 1 (A14)
X 3 dx dx 2 (A4

For large X, the solution to Eq. (A14) is

x + 0 ( (A15)
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or

n l-6exp [- (s3r) (A16)

This solution more closely resembles the ionospheric problem

since it represents a density depletion being filled with plasma.

Equation (A16) predicts that the scale length of the density

1/3
sheath broadens at a rate proportional to T . This isan

slightly faster then the results shown in Figure 5 for (A/L )max

vs. T which is not surprising owing to the approximationsan

made in obtaining Eq. (A16).
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